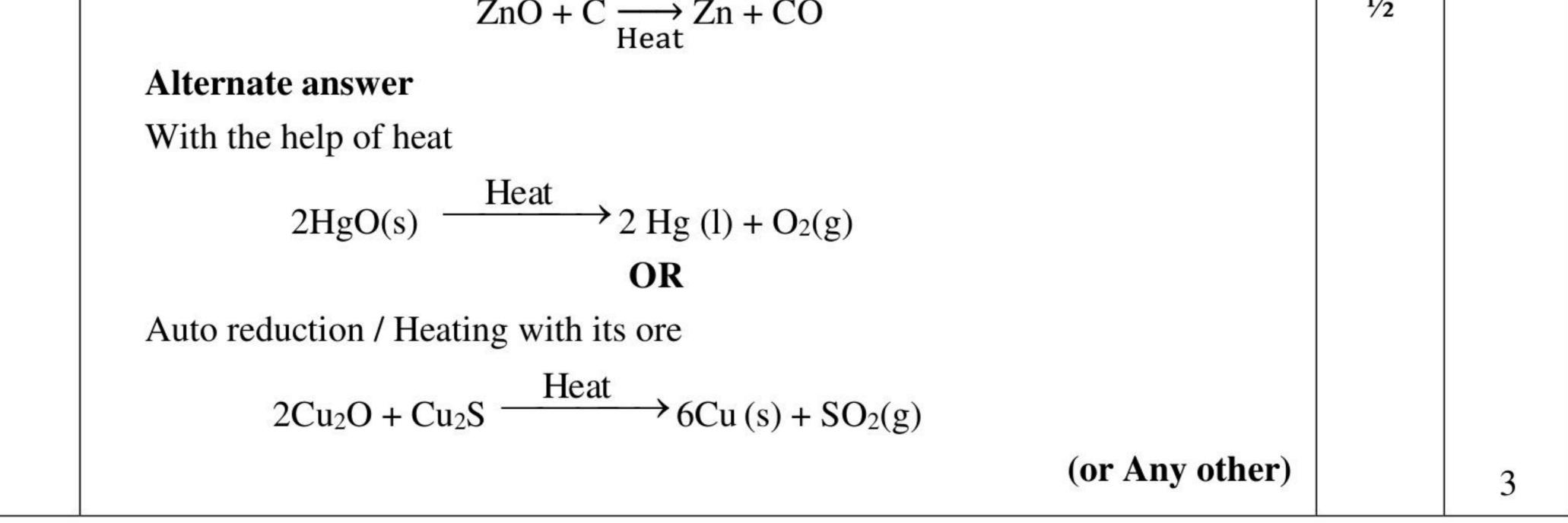
MARKING SCHEME Secondary School Examination, 2023 SCIENCE (Subject Code–086) [Paper Code: 31/2/1]

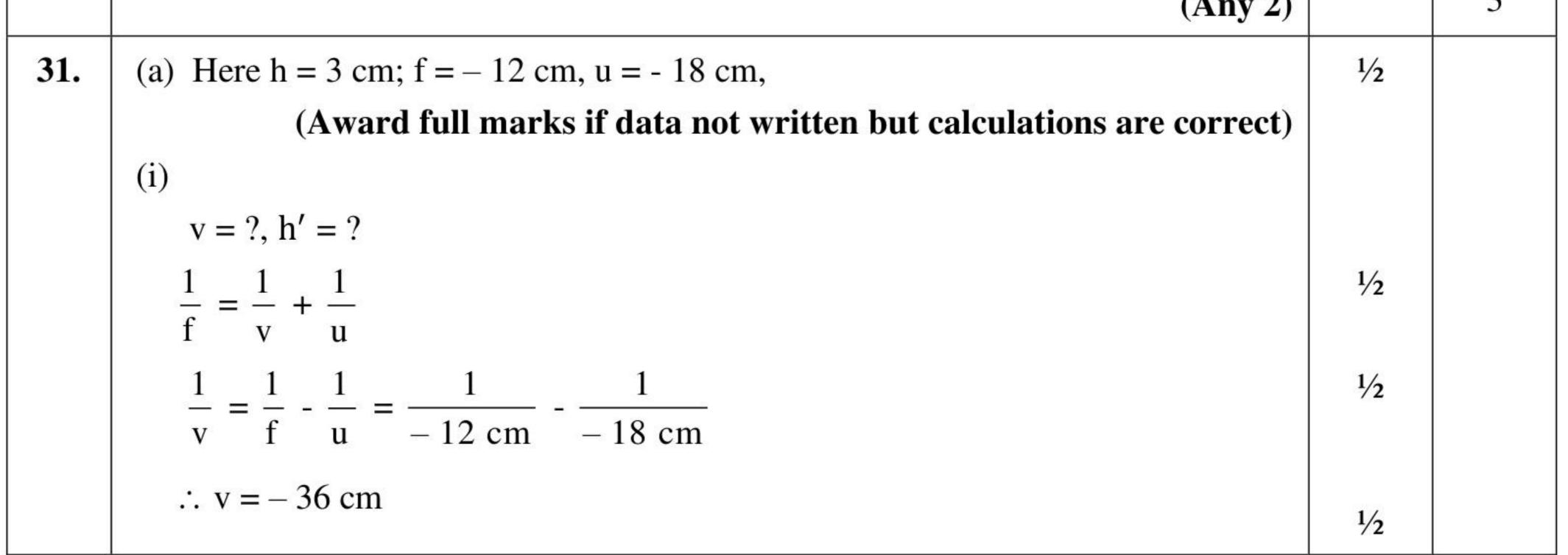
Maximum Marks: 80

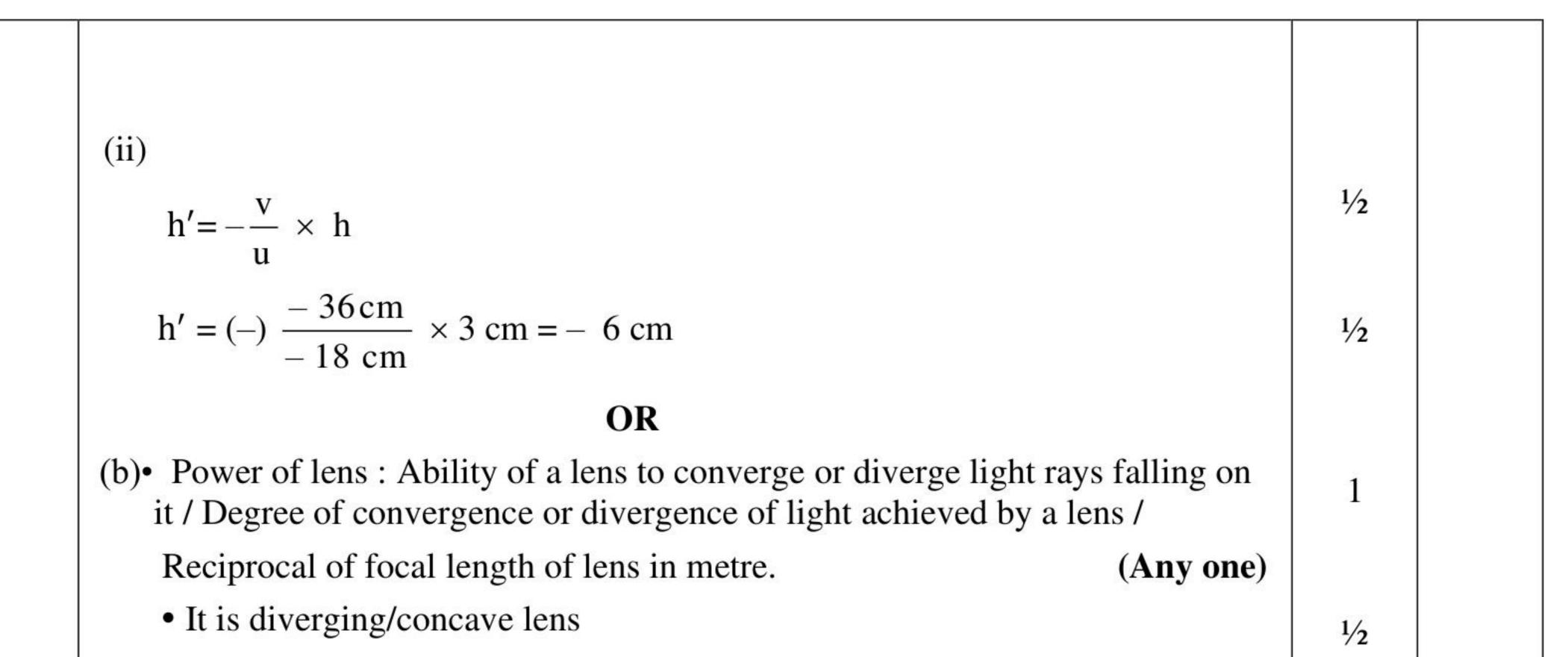
Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
	SECTION-A		
1.	(c)	1	1
2.	(c)	1	1
3.	(a)	1	1
4.	(b)	1	1
5.	(a)	1	1
6.	(c)	1	1
7.	(c)	1	1
8.	(b)	1	1
9.	(b)	1	1
10.	(c)	1	1
11.	(d)	1	1
12.	(a)	1	1
13.	(d)	1	1
14.	(b)	1	1
15.	(b)	1	1
16.	(c)	1	1
17.	(d)	1	1
18.	(a)	1	1
19.	(c)	1	1
20.	(b)	1	1
	SECTION—B		
21.	(a) • Yellow precipitate of lead iodide is formed.	1⁄2	
	 Double displacement reaction / Precipitation reaction 	1/2	
	$Pb (NO_3)_2 + 2KI \longrightarrow PbI_2 + 2KNO_3$	1	

X_086_31/2/1_Science # Page-**3**

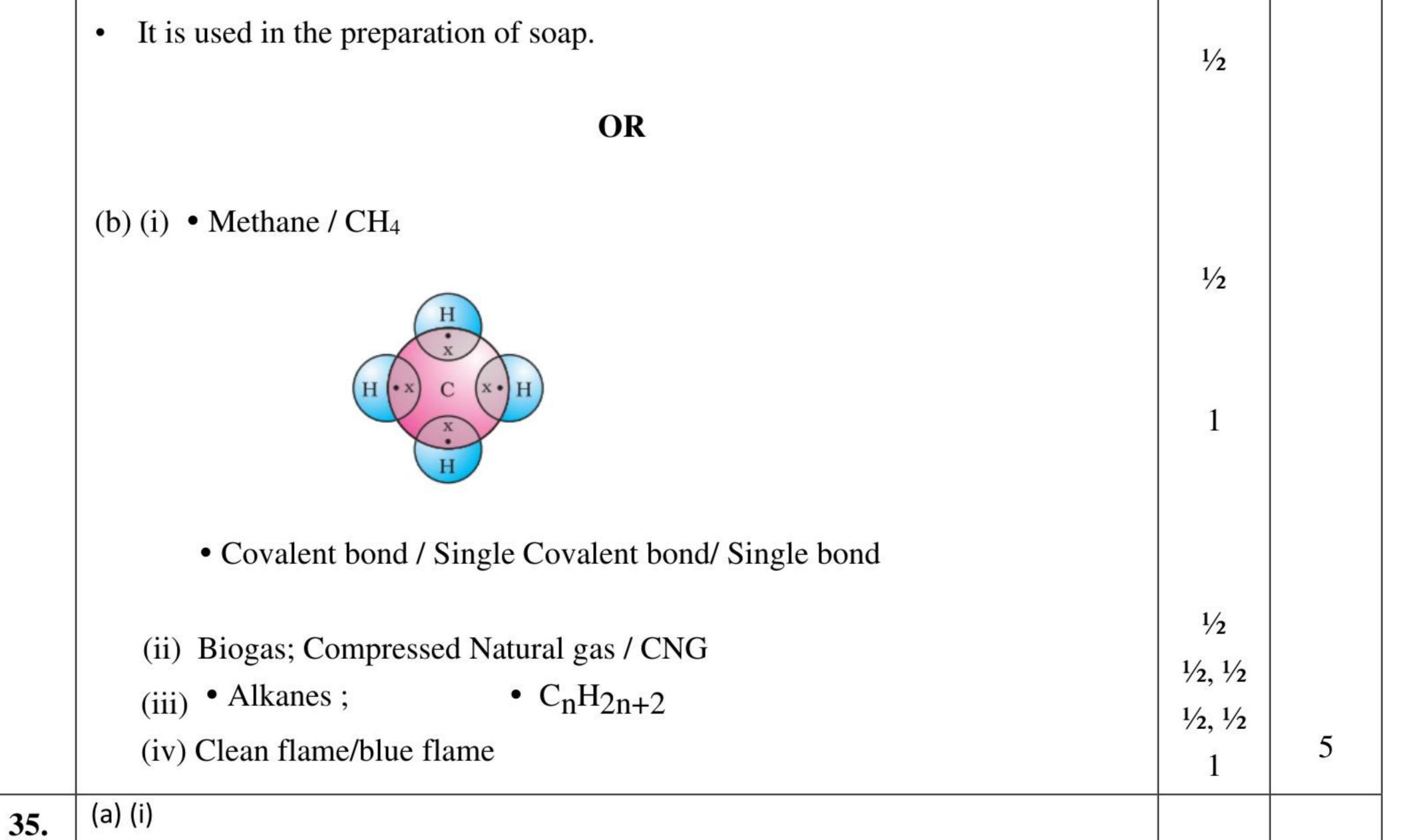

,	OR		
	(b) (i) • Oxygen is added to copper / Copper is oxidised	1/2	
	• copper oxide / CuO	1/2	
	(ii) By passing hydrogen gas over it	1	
	Alternative answer		
	(i) $2Cu + O_2 \xrightarrow{\Delta} 2CuO$		
	(ii) $CuO + H_2 \longrightarrow Cu + H_2O$		2
22.	(a) Birds and mammals have high energy needs to maintain their body temperature. The separation of oxygenated and deoxygenated blood allows a highly efficient supply of oxygen to maintain their body temperature.	1	
	(b) • Amphibians / reptiles;	1/2	
	• Temperature of the environment.	1/2	2
23.	(a) Tt	1/2	
	(b) Because only Dominant trait (Tall) is expressed in F1 generation / Tallness is dominant over recessive short trait.	1	
	(c) F ₂ generation – Tall : short		
	3 : 1	1/2	2
24.	(a) • It is formed after a rain shower.	1/2	
	• It is always formed in a direction opposite to that of the Sun.	1/2	
	Raindrop Sunlight Red Violet	1	

	OR			
	(b) (i) The phenomenon of the change in direction of propagation of light caused by large sized molecules/ caused by colloidal particles.	1		
	 (ii) When sunlight passes through the atmosphere, fine particles in the air scatter blue light (shorter wavelengths) more than the red colour (longer wavelengths). 	1	2	
25.	• Wire B.	1		
	• For the conductors of the same dimensions greater the resistance, greater is the			


	r	esistivity.		1	2
26.	•	An aquarium is a man-made ecosystem	n in which natural cleansing agents like	1	
		decomposers are not present, so needs p	periodic cleaning;		
	•	ponds and lakes are natural ecosystems	which have natural cleansing agents.	1	
		(Decomposers)			2
		SECT	TION—C		
7.	(a)	White		1/2	
	(b)	Decomposition reaction / Photolytic de	composition	1/2	
		$2AgCl \xrightarrow{Sunlight}$		1	
		$2 \text{AgCI} \longrightarrow$	$ZAg + CI_2$		
	(c)	used in black and white photography;	AgBr / Silver Bromide	1/2, 1/2	3
8.			0	/2, /2	2
.0.					
		Roasting	Coloination	1 1	
		Koasting	Calcination		
	1	It is carried out for sulphide ores.	It is carried out for carbonate ores.	1⁄2	
	1		It is carried out for carbonate ores. Ore is heated in absence or limited	1/2	
	1	It is carried out for sulphide ores.	It is carried out for carbonate ores.	1/2 1/2	
	1	It is carried out for sulphide ores. Ore is heated in excess of air	It is carried out for carbonate ores. Ore is heated in absence or limited supply of air. Heat		
	1	It is carried out for sulphide ores.	It is carried out for carbonate ores. Ore is heated in absence or limited supply of air.		
	2	It is carried out for sulphide ores. Ore is heated in excess of air $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ OR Heat	It is carried out for carbonate ores. Ore is heated in absence or limited supply of air. $ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$ OR heat		
	1	It is carried out for sulphide ores. Ore is heated in excess of air $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ OR $2HgS + 3O_2 \longrightarrow 2HgO + 2SO_2$	It is carried out for carbonate ores. Ore is heated in absence or limited supply of air. $ZnCO_3 \xrightarrow{\text{Heat}} ZnO + CO_2$ OR $CaCO_3 \xrightarrow{\text{heat}} CaO + CO_2$		
	1	It is carried out for sulphide ores. Ore is heated in excess of air $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ OR $2HgS + 3O_2 \xrightarrow{Heat} 2HgO + 2SO_2$ OR	It is carried out for carbonate ores. Ore is heated in absence or limited supply of air. $ZnCO_3 \xrightarrow{\text{Heat}} ZnO + CO_2$ OR $CaCO_3 \xrightarrow{\text{heat}} CaO + CO_2$ OR		
	1	It is carried out for sulphide ores. Ore is heated in excess of air $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ OR $2HgS + 3O_2 \longrightarrow 2HgO + 2SO_2$	It is carried out for carbonate ores. Ore is heated in absence or limited supply of air. $ZnCO_3 \xrightarrow{\text{Heat}} ZnO + CO_2$ OR $CaCO_3 \xrightarrow{\text{heat}} CaO + CO_2$		
	1	It is carried out for sulphide ores. Ore is heated in excess of air $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ OR $2HgS + 3O_2 \xrightarrow{Heat} 2HgO + 2SO_2$ OR Heat Heat	It is carried out for carbonate ores. Ore is heated in absence or limited supply of air. $ZnCO_3 \xrightarrow{\text{Heat}} ZnO + CO_2$ OR $CaCO_3 \xrightarrow{\text{heat}} CaO + CO_2$ OR heat		
	1	It is carried out for sulphide ores. Ore is heated in excess of air $2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ OR $2HgS + 3O_2 \xrightarrow{Heat} 2HgO + 2SO_2$ OR Heat Heat	It is carried out for carbonate ores. Ore is heated in absence or limited supply of air. $ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$ OR $CaCO_3 \xrightarrow{heat} CaO + CO_2$ OR $PbCO_3 \xrightarrow{heat} PbO + CO_2$		

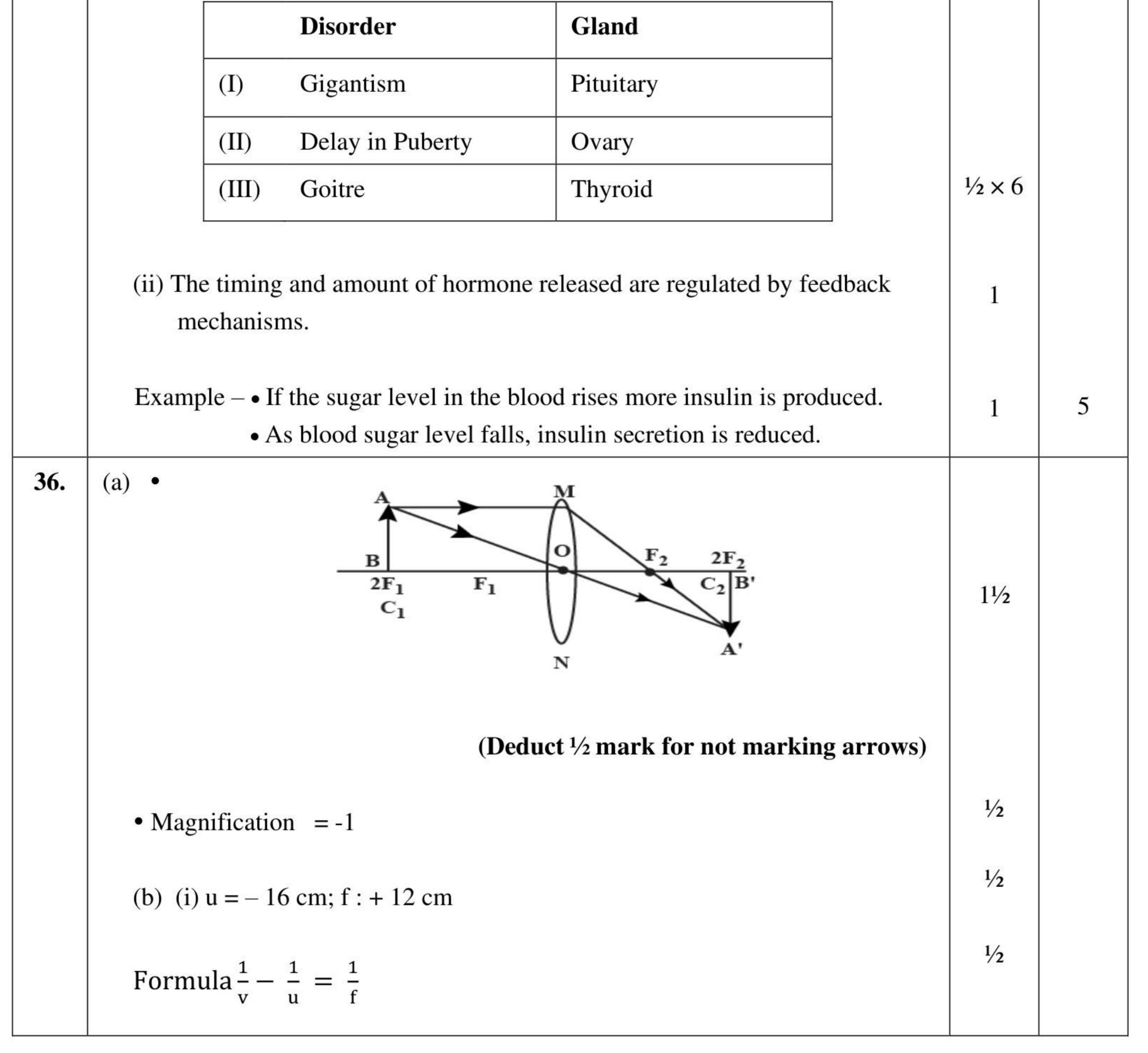


29.	(a) (i) Glucose \longrightarrow Pyruvic acid /Pyruvate	1/2	
	In the cytoplasm	1⁄2	
	in the cytopiasin		
	(ii) It is used as fuel for all activities in a cell / ATP is broken down giving rise to a fixed amount of energy which drive endothermic reactions in the cell.	1	
	(iii) When air is taken in and let out, the lungs always contain a residual volume	1	
	of air so that there is sufficient time for the oxygen to be absorbed and for		
	the carbon dioxide to be released / volume of air present in lung after		
	exhalation.		
	OR		
	(b) • A potted plant is taken and kept in dark for 24 hrs to destarch it.		
	• Cover a part of a leaf of the plant with black paper to prevent that area from		
	getting sunlight.		
	 Keep the plant in sunlight for 24 hours. 		
	• Pluck the leaf, remove the black paper, boil it in alcohol and dipthe leaf in		
	iodine solution for starch test.		
	• The covered part showed no change in colour indicating that starch has not		
	been produced due to the absence of sunlight.		
	• The rest of the leaf turned blue black proving that starch is produced during	$\frac{1}{2} \times 6$	3
	photosynthesis and sunlight is essential for that.		
30.	• Adrenaline hormone; Adrenal gland	1/2, 1/2	
	• Response-		
	•Heart beats faster resulting in supply of more oxygen to muscles		
	 Breathing rate increases 		
	 Blood supply to digestive system and skin reduced. 		
	 Blood supply diverted to skeletal muscles. 	1 × 2	
	(Any 2)		3

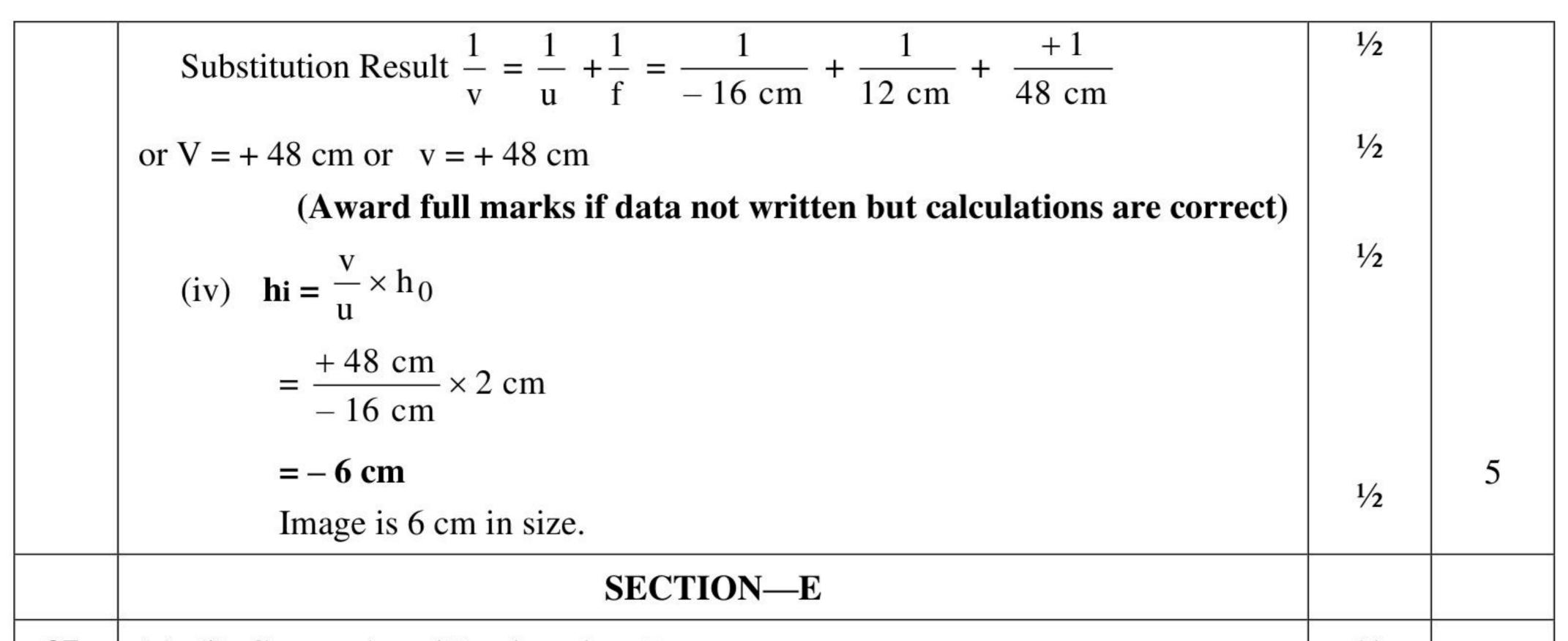


	• $\mathbf{P} = \frac{1}{f(m)}$ = $\frac{100}{f(cm)}$	1⁄2	
	$P = \frac{100}{-10 \text{ cm}} = -10 \text{ D}$	1⁄2	
	 Sign of magnification = + or positive 	1⁄2	3
32.	• Overloading : Overloading of an electrical circuit happens when an excessive amount of electric current flows through the wires.	1	
	• Two causes :		
	(i) Contact between live and neutral wire/ short circuiting	1⁄2	
	 (ii) Connecting too many appliances to a single socket. (iii) Accidental hike in supply voltage (Any two points) (Any other) 	1⁄2	
	• Preventive measure :		
	(i) To use wires of proper insulation/proper rating		
	(ii) Not connecting too many appliances to a single socket.		
	(iii) fuse wires (Any one)	1	3
33.	• Some harmful substances like pesticides are used to protect crops. When these		5 D.
	chemicals are washed down in the soil or water bodies, they are absorbed by		
	plants along with water and minerals and by animals from water. When we	2	
	consume these food items, the pesticides enter our body.		
	(Alternate answer : If the child explains the question through food chain, credit marks.)		
	 As human beings occupy the top level in any food chain, maximum concentration of these chemicals get accumulated in them. 	1	3
	SECTION-D		

34.	(a) 'X' – CH ₃ COOH / Ethanoic Acid / Acetic Acid	1⁄2	
	'Y' – C_2H_5OH / Ethanol	1⁄2	
	'Z' – CH ₃ COOC ₂ H ₅ / Ethyl Ethanoate	1⁄2	
	• $CH_3COOH + C_2H_5OH \xrightarrow{Acid} CH_3COOC_2H_5 + H_2O$ catlyst	1	
	Esterification Reaction	1	
		1⁄2	
	• $CH_3COOC_2H_5 \xrightarrow{NaOH} C_2H_5OH + CH_3COONa$	1	
	Saponification Reaction	1⁄2	



Nervous Control	Hormonal Control
I. Messages are sent as an electrical impulse.	1. Messages are carried in the form of chemicals (hormone)
2. It is carried through Neurons.	2. It is carried through blood.
 Nerve impulses produce rapid responses. 	3. Hormones produce slow responses.



 Nerve impulses produce short lived responses. 	 4. Hormones produce long lasting responses. (or Any other) (Any three) 	1×3
 (ii) • When growing shoot is exposed shifting towards the shaded side 	to unidirectional light, it results in auxin	1
 More auxin causes more growth bending of stem towards source 	of shoot in the shaded side resulting in the of light.	1
	OR	
(b) (i)		

37.	(a) (i) Groups A and B – less than 7	1/2	
	(ii) Group C – greater than 7	1⁄2	
	(b) pH paper and universal indicator.	1/2, 1/2	
	 (c) • Copper vessel is tarnished due to formation of basic copper oxide. • Lemon juice being acidic react with copper oxide and the salt formed is washed away. 	2	
	OR		
	(c) • An optimal pH is required for digestion.		
	 Change in pH can cause tooth decay 		
	 Animals and plants defend themselves through change in pH. 		
	 Survival of aquatic life becomes difficult when pH of river water becomes low. 	1×2	
	(or any other) (Any two)		4
38.	(a) Leishmania – Binary fission ; Plasmodium – Multiple fission	1/2, 1/2	

(b) Sexual reproduction leads to more variations which are useful for	1	
ensuring the survival of a species.(c) (i) sugar solution provides nutrients for growth and multiplication whereas	1	
water does not do. (ii) Moisture is required for the growth of Rhizopus.	1	
OR		
(c) • Spirogyra		
 Fragmentation – Spirogyra simply breaks up into smaller pieces upon 	1/2	
maturation. Each piece grows into a new individual.	¹∕2, 1	4

			[
39.	(a) • Both have same reading / $A_1 = A_3$	1⁄2	
	 Both are connected in series 	1⁄2	
	(b) Reading of $A_2 = \frac{1}{4}A$ as current is equally divided in the four identical		
	resitors . /Reading of $A_2 = \frac{1}{4}$ times Reading of A_3 . / $A_2 = 0.25$ A / $A_2 < A_3$		
	(c) $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$ / $R_p = \frac{R}{n}$	1	
	$\frac{1}{R_p} = \frac{1}{3\Omega} + \frac{1}{3\Omega} \qquad \qquad$	1⁄2	
	V = I R	1/2	

$$V_{1} = 1A \times \frac{3}{2} \Omega = \frac{3}{2} V = 1.5V$$

$$OR$$

$$V_{2}$$

$$\frac{1}{R_{p}} = \frac{1}{3\Omega} + \frac{1}{3\Omega}$$

$$\therefore R_{p} = \frac{3}{2} \Omega$$

$$\frac{1}{R_{p}} = \frac{1}{3\Omega} + \frac{1}{3\Omega} + \frac{1}{3\Omega}$$

$$\frac{1}{R_{p}} = \frac{1}{3\Omega} + \frac{1}{3\Omega} + \frac{1}{3\Omega}$$

$$\frac{1}{R_{p}} = \frac{1}{3\Omega} + \frac{1}{3\Omega} + \frac{1}{3\Omega} + \frac{1}{3\Omega}$$

$$\therefore R_{p_{3}} = \frac{3}{4} \Omega$$

$$\therefore R = R_{p_{1}} + R_{p_{2}} + R_{p_{3}} = \left(\frac{3}{2} + 1 + \frac{3}{4}\right)\Omega = \frac{13}{4} \Omega / 3.25 \Omega$$

$$V_{2}$$

X_086_31/2/1_Science # Page-**11**

*These answers are meant to be used by evaluators.

1/2

